CHAPTER 3—THE INFINITE SLOPE MODEL
3.1 Description

LISA uses the infinite slope stability model to calculate the factor of safety.
The infinite slope model geometry and equation are shown in figure 3.1. Ap-
pendix A gives the derivation of the infinite slope equation. We selected the in-
finite slope model primarily because the model’s simplicity allows for easy use
in Monte Carlo simulation, not because of its accuracy. However, experience has
shown that if used carefully, it does adequately analyze for planning purposes
the most common failure types found in the mountainous West—debris flows
and debris avalanches characterized by the failure of a soil mantle that over-
lies a sloping drainage barrier (Gray and Megahan 1981; Prellwitz and others
1983; Sidle and others 1985; Wu and others 1979). The drainage barrier may
be bedrock or a denser soil mass. The factor of safety calculated by the infinite
slope equation corresponds closely with that calculated for translational fail-
ures using a more rigorous method of slices, such as Janbu’s Simplified Method.
In general, the infinite slope equation, and therefore LISA, does not adequately
analyze deep-seated rotational failure modes. However, the probability of rota-
tional slope failures may be reasonably estimated using LISA if conditions that
exist at the center of gravity of a failure mass are used in the analysis. The pro-
cedure for estimating the conditions at the center of gravity is described in de-
tail by Prellwitz (1988), and an example application is given by Ristau (1988).
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3.2 Assumptions

The infinite slope model relies on several simplifying assumptions. First, the
failure plane and the groundwater (phreatic) surface are assumed to be paral-
lel to the ground surface. The drainage barrier and ground surface often are
found to be nearly parallel on colluvial slopes. Also, a large hydraulic conduc-
tivity contrast between the soil and drainage barrier can cause groundwater flow
to be nearly parallel to the drainage barrier. Therefore, the conditions of par-
allelism often are approximately met. However, the user should be aware that
parallel seepage may not be the case, and if not, the factor of safety may be sig-
nificantly overestimated or underestimated, depending on the actual seepage
direction (Iverson and Major 1987, 1986).

Second, the failure plane is assumed to be of infinite extent. Of course, in na-
ture the failure plane does extend to the ground surface. Therefore, values for
root strength and soil shear strength that reflect conditions along the true fail-
ure plane, not just along the drainage barrier, should be used. For example,
when the infinite slope failure plane is beneath the root zone, implying no root
strength, some root strength still should be used in the analysis to account for
the true failure plane passing through the root zone to the ground surface along
the lateral and head scarps. The values of root strength used should, however, <
be less than if the failure plane passed entirely through the root zone. Suggested
root strength values for these different conditions are given in section 5.3.4.

Third, only a single soil layer is considered. In the case of multiple layers, the
soil shear strength values occurring at the base should be given the most weight,
but as with root strength, values should be adjusted (weighted) to account for
the shear strength along the entire failure plane as it extends to the ground sur-
face. For example, suppose 80 percent of the failure plane passed through soil
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FS -
sin a cos a[go + 7(D — D) + Ysat Dw)

where FS = factor of safety
a = slope of the ground surface, degrees
D = total soil thickness, ft
D,, = saturated soil thickness, ft
C, = tree root strength expressed as cohesion, psf
go = tree surcharge, psf
C! = soil cohesion, psf
¢' = effective internal angle of friction, degrees
74 = dry soil unit weight, pcf
v = moist soil unit weight, pcf
Yeat = saturated soil unit weight, pcf
7w = water unit weight, pcf

Figure 3.1—The infinite slope equation and variables used in LISA.

with C!, = 20 psf and ¢' = 36°, and 20 percent through soil with Cl = 120 pst
and ¢’ = 22°. The weighted values then would be:

Cs' = 0.8(20 psf) + 0.2(120 psf) = 40 psf

¢ = 0.8(36°) + 0.2(20°) = 33.2°
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And last, the infinite slope equation is a two-dimensional analysis. Thus, the
user must assume that a two-dimensional analysis is appropriate. Comparison
of the infinite slope with a three-dimensional block model (Burroughs 1984)
shows that the infinite slope model gives the same answer for blocks with widths
greater than about 25 to 30 feet. Therefore, a two-dimensional analysis is most
appropriate for wide blocks where resistance along failure sides is not significant
relative to resistance along the base. If failures are narrower, the infinite slope
model is conservative (it calculates lower factors of safety than does a three-
dimensional analysis). A Monte Carlo simulation program using the three-
dimensional model (called 3DLISA) is currently under development and evalua-
tion at the Intermountain Research Station in cooperation with the University
of Idaho and the Bureau of Land Management.

3.3 Sensitivity to Input Values

A sensitivity analysis of the infinite slope model is helpful to identify the most
important variables and thus guide the user in expending time and money col-
lecting information. One method for evaluating the sensitivity of the factor of
safety (F'S) to each variable has been outlined by Simons and others (1978):

1. Select a realistic range of values for each input variable.

2. Calculate a base F'S value using some central value for each variable, such
as the mean, median, or mode value.

3. Vary the value for one input variable at a time over the range of realistic
values and compute the F'S values.

4. Plot the percentage of change in F'S (% AFS) relative to the base value
against the percentage of change in each input variable relative to the
central value (% AX), where the percentage of change is calculated as:

s e e

FS using ¢; — F'S using central
FS using central

%AFS = X 100%

z; — central @

NAX = x 100%

central z

Figure 3.2 is a sensitivity plot for a selected set of central values. It is obvious
from this figure that increasing soil and root strength will increase the F'S, and
increasing slope and groundwater-soil depth ratio (or groundwater height) will
decrease the F'S. Generally, the F'S is most sensitive to slope and insensitive to
soil unit weight, soil moisture content, and tree surcharge. (F'S is so insensitive
to the last three factors that they are not even shown on fig. 3.2.) Therefore, it
is important to have good field estimates of slope, while unit weight, moisture
content, and tree surcharge values can be estimated from the literature.

The relative sensitivity of the F'S to the other variables will change depending
on the central values selected. This is illustrated by figure 3.3, in which only the
central value for soil depth has been changed from 10 feet in figure 3.2 to 2 feet
in figure 3.3. The F'S becomes more sensitive to soil and root cohesions and less
sensitive to groundwater-soil depth ratio and ¢' when the central value for soil
depth is decreased. The sensitivity of F'S to soil depth is discussed in greater
detail below. :

32




G e B

Change in FS, percent

100 =

T T 7T T I 7T 1T 17 rrirrrprrrrrrrrrqirr o nrrTTririTTd
- [} -
o D (Dw/D = 0.5) Cantral 4
Value Range 4

D 10 2-30
@ 3] 30-80 T
qo- 15 —_—— -

Cr 80 0—160
Dw/D .8 0—1

¢ 32 26-38 R
Cs' 20 0-40 -
vd 100 ———

50

— 1
___50Illllllll![\&\(lll(!lll!l!ll||ljIllll|l

-100 -50 0 50 100
Change in X, percent

Figure 3.2—Fxample sensitivity plot for the infinite slope equation with
central soil depth equal to 10 feet.

Other important sensitivity trends and interdependencies between variables
should be noted.? Figure 3.4 shows that soil and root cohesions (Cr + Cs) af-
fect the factor of safety more on thin soils than on thick soils.> Another study
(Sidle 1984a) shows that the sensitivity of F'S to Cyp + Cy is even more pro-
nounced on steep slopes, particularly when the soils are saturated. Thus, alter-
ing C, through timber harvest would affect the stability of thin, steep sites more
than thick, gentle sites. Conversely, ¢ affects the 'S more on thick soils (par-
ticularly with gentle slopes) than on thin soils (fig. 3.5). These trends should
be expected, because frictional strength is more important in conditions of high

4Unless otherwise stated, the central values for figures 3.4 to 3.7 are the same as those used
in figure 3.2. These figures show the percentage of change in F'S relative to the lowest value
of X used, rather than to the central value. Plotting in this fashion makes the trends easier
to see.

5The resisting force in the infinite slope equation is expressed as: S = Cr4-Cltol, tan ¢’
Because soil and root cohesions are added, the sensitivity of F'S to each is the same. Thus,
the sensitivity to cohesion, irrespective of whether it is from the soil or roots, can be exam-
ined by looking at the sum. -
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Figure 3.3—Example sensitivity plot for the infinite slope equation with
central soil depth equal to 2 feet.

normal stress, and cohesive strength is more important in conditions of low nor-
mal stress.

The effect of soil depth (D) on the F'S depends on (1) whether or not there is
soil or root cohesion and (2) how groundwater is handled in the analysis; that
is, the effect of D on FS is different when Dy, /D is held constant as D is varied
than when Dy, is held constant, because when Dy, /D is held constant, Dy, also
varies. Although LISA uses D, /D, it is informative to note the effects on F'S
caused by changing D with Dy, held constant. The relative magnitude of these
effects depends on slope, but the same trends occur on slopes between 20 and
150 percent, the range investigated by the authors.

Figure 3.6 shows the effects of changing D when there is no cohesion (Cr +
C! = 0). Three observations can be made:

o When there is no groundwater (D, /D = 0), there is no change in the

FS as D varies. The change in driving force directly balances the change

in resisting force. (The infinite slope equation for this case simplifies to

FS =tan ¢/ tan a, showing directly that F.S is independent of D.)
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Figure 3.4—Sensitivity of 'S to soil and root cohesion at various soil

\depths.

o When Dy, /D is held constant at any value greater than zero, F'S decreases
slightly with increasing D. ‘

e When D,, is held constant at any value greater than zero, 'S increases
with increasing D.

Figure 3.7 shows the effects of changing D when there s cohesion (CL + Cr > 0).
The variation in F.S with changing D is quite different than when Ccl+Cr=0.

o When there is no groundwater (Dy/D = 0 or Dw = 0), there is a fairly
large decrease in F'S with increasing D.

e When Dy, /D is held constant at any value greater than zero, there is even
greater decrease in F'S with increasing D.

e When Dy, is held constant, different effects on the F'S with changing D
are observed. For every set of central values, there will be one value for
D,, for which there will be no change in F'S as D varies (3.4 ft in fig. 3.7).
For Dy, values greater than this equilibrium value of Dy, the FS will in-
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Figure 3.5—Sensitivity of F'S to friction angle at various soil depths.

crease as D increases. For Dy, values less than this equilibrium value, the
FS will decrease as D increases.

Thus, the user should appreciate that whether the F'S increases or decreases
with changing soil depth, as well as the sensitivity of the F'S to soil depth, de-
pends on the groundwater and cohesion (C§ + Cr) values used. However, in
general, it is wise to consider the FS sensitive to D and plan on spending some
effort in obtaining reliable field estimates for D values.
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CHAPTER 4—HOW THE LISA PROGRAM
WORKS (THE INSIDE NUTS AND BOLTS)

4.1 Overview

In general, the operation of LISA is as follows:

1. The user selects a distribution type for each input parameter in the infi-
nite slope equation and then enters the values to describe that distribution.
The user may choose a constant value or a uniform, normal, lognormal,
triangular, beta, or relative-frequency histogram distribution. A bivariate-
normal distribution also may be selected for C, and ¢'.

2. LISA generates a column of up to 1,000 values for each parameter. The
number of values is specified by the user. The various procedures for sim-
ulating values from the distributions are beyond the scope of this paper,
but procedures can be found in Abramowitz and Stegun (1965), Hall and
Kendall (1992), Iman and Shortencarier (1984), Newendorp (1975), and
Rubinstein (1981). A frequency histogram of the 1,000 values for each pa-
rameter will closely match the shape of the distribution specified by the
user, but the 1,000 values are generated in a random order (uunless they are
correlated to another input parameter as discussed in section 4.2). LISA
displays the minimum, maximum, mean, and standard deviation for each
variable as the values are generated.

3. LISA then calculates the factor of safety for each set of generated values.
The result is 1,000 possible realizations of the factor of safety, with relative
frequencies being a result of the distributions used for each input variable.
The minimum, maximum, mean, and standard deviation for the factor of
safety and probability of failure are displayed.

4. The user then may view the frequency histogram of the factor of safety
values and of the values simulated for each variable, and may view scatter
plots of any pair of variables, or of a variable and the factors of safety.

Detailed descriptions of LISA operations are found in Part 2—Program Oper-
ation.

4.2 Correlation Between Variables

Some of the stochastic variables in the infinite slope equation are not indepen-
dent. The relationship between these variables must be accounted for to achieve
a realistic simulation of F'S values. The variables treated as dependent by LISA
are C! and ¢/, and 74 and ¢'.

Although there exists some contradiction in the literature, C} and ¢' gen-
erally are considered to be inversely related, as illustrated in figure 4.1. Cor-
relation coefficient () values of —0.2 to —0.85 have been reported (Cherubini
and others 1983). Figure 4.2 illustrates how treating C} and ¢’ as independent
variables could result in simulating unrealistic values of soil shear strength. II-
lustrated are three sets of shear strength tests on a particular soil, resulting in
three Mohr-Coulomb failure envelopes that clearly show an inverse relationship
between CL and ¢'. If LISA selected values of C} and ¢' independently, the high-
est value for each could be selected from the test data (CLg with ¢), and the
upper dashed failure envelope shown in figure 4.2 could result. Obviously this
failure envelope is outside the possibilities given by the test data and would re-
sult in shear strength values that are too high. Similarly, shear strength values
that are too law also could be simulated using C!; with ¢} as illustrated by the
lower dashed envelope in figure 4.2.
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Figure 4.1—lllustration of the inverse relationship between C and ¢’
(data from Hampton and others 1974).

Figure 4.3a and 4.3b contrasts how larger negative values of 7 act to reduce
the variance of simulated shear strength. Values for r may be obtained from
laboratory data or estimated from the literature. Section 5.3.5.6 describes how
to obtain values for ». |

The second relationship considered by LISA is the positive correlation that
exists between v4 and ¢'. Figure 4.4 shows this correlation for a decomposed
granitic soil. The correlation coefficient for this data set is +0.79. LISA han-
dles this relationship simplistically by using the same random number to sample
from the univariate distributions for 74 and ¢'. Therefore, when a high value is
sampled for 74, a high value is sampled for ¢' to model the desired proportional
relationship. This method produces correlation coefficient between 74 and ¢’ of
0.95 to 1.0 (with 1.0 occurring when the same distribution type is used for both
variables). This degree of correlation is much greater than is found in nature.
However, because the infinite slope equation is insensitive to 74, the probability
of failure values are affected only slightly (usually reduced slightly).

The same random number is not used to sample values for 74 and ¢' when
- using the bivariate normal PDF for C!, and ¢'. The reason for this is that the
bivariate normal would most likely be used to model the shear strength of over-
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consolidated clay which typically shows a C%-¢' correlation due to curvature of
the Mohr-Coulomb failure envelope (see section 5.3.5.3.2). Because of this cur-

vature, it is unclear whether overconsolidated clay will exhibit a correlation be-
tween 4 and ¢'.

Your field experience may lead you to beheve that other variables in the infi-
nite slope equation are correlated. For example, an inverse relationship between
soil depth and ground slope is commonly observed. However, it is difficult to
obtain a functional relationship that can be used to simulate this correlation
without significant amounts of data. A correlation between variables can be ac-
counted for somewhat by more detailed mapping of sites and use of distribu-
tions for each site which reflect the observed correlation. Figure 4.5 illustrates
distributions for two hypothetical sites in a particular study area which reflect
an inverse relationship between soil depth and slope. For individual Monte Carlo
passes, D and a values will be simulated independently, so that large D and
a values (for site 1, for example) certainly can be simulated on any given pass.
However, for the entire simulation, many small D values will be simulated with
large a values, so that the inverse relationship will loosely hold for the site.
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Another method to account for a correlation between two variables on a given
site is to analyze narrow enough classes for one variable so that within each
class, the second variable can be considered to be independent of the first. The
result is a conditional probability of failure for each class. For example, if slopes
were analyzed in narrow classes, the results would be interpreted thus—“for ar-
eas of the site where the slope is between 45 and 55 percent, the probability of
failure is 0.014, and for areas where the slope is between 55 and 65 percent, the
probability of failure is 0.036.” The specific locations of each class on the site
would not have to be known to use this procedure.

The conditional probability of failure for each class of the first variable can be
multiplied by the probability of the variable being in that class to give a weighted
probability of failure. The weighted probabilities of failure for all classes then
can be summed to give the average, or expected, probability of failure for the
entire site. (Note that the probabilities of the variable being in each class must
sum to 1.) .

A future version of LISA may allow the user to enter a functional relationship
between selected variables, thereby accounting for correlation in a more rigorous
manner.

4.3 Simulating Groundwater Values

To prevent simulating a groundwater height (D,,) inconsistent with the simu-
lated soil depth (D) on any given pass, LISA simulates a value of groundwater-
soil depth ratio (D /D) from a distribution defined by the user. LISA then mul-
tiplies the simulated value of D,,/D by the simulated value of D to obtain a
value of Dy, to use in the infinite slope equation. Because the infinite slope model
assumes a phreatic groundwater surface (see appendix A), LISA does not cor-
rectly calculate the F'S if Dy, /D values are negative or greater than 1, so effec-
tive stresses due to either capillary suction or artesian pressures cannot be ana-
lyzed. To prevent errors, LISA does not accept a distribution with D,,/D values
that are negative or greater than 1.

4.4 Reproducibility of the Probability of Failure

If the user repeats a simulation with the same input PDF’s but specifies a dif-
ferent seed number for the random number generator, LISA will simulate a dif-
ferent sequence of values for each random variable. This results in a different
histogram of factors of safety and a slightly different value for the probability of
failure. The more iterations (passes) used, the less the difference between sim-
ulation runs will be. The number of iterations required to provide consistent,
stable results is a function of the shapes and ranges of the probability distribu-
tions used for each input variable.

Figure 4.6 illustrates how the variation between simulations decreases as the
number of iterations in each simulation increases. In this example, 30 simula-
tions were run with 100 iterations, then 30 simulations with 200 iterations, and
so on up to 1,000 iterations, and the standard deviations of each set of the re-
sulting 30 probabilities of failure computed. Clearly 100 iterations produce a
large variation between simulation results, and the variation drops off rapidly
with more than 200 iterations. In order to produce stable results, we recommend
that 1,000 iterations, the maximum allowed by LISA, be used for all production
work. Even with 1,000 iterations, there will be some variation between sim-
ulations. Therefore, we also recommend that several simulation runs be per-
formed using the same input distributions and different random seeds (those

B
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Figure 4.6—The standard deviations of 30 probability of failure values
plotted against the number of iterations in each of the 30 simulations.

generated by LISA ), and that the range of probability of failure values obtained
be reported. This helps to reinforce the concept that LISA is a simulation that
does not produce a unique “right” answer. Figure 4.7 illustrates typical amounts
of variation in the probabilities of failure to expect from repeated simulations of
1,000 iterations. The amount of variation is proportionately larger for probabili-

- ties of failure that are smaller in magnitude, as demonstrated by the coefficients
of variations.

45




30 5
P; =0.480
25 1 s(Py) = 0.011
C, =0.023
(2]
§
5 204
£
&
s
O 15+
Gt
Q
3
g 104
=1
z
5 o
0
45 .46 A7 .48 A9 50 .51
Probability of Failure (Py)
15 T
Py =0.0095
s(Py) = 0.0034
@ C, = 0.351
2 104
g
3
c
3
g
ERRA
z
0
.004 .006 .008 .010 .012 014 016

Probability of Failure (Py)
Figure 4.7—Illustrations of typical amounts of variation in probability

of failure to expect with repeated simulations for two different sets of
input distributions (n = 60).

46

e S
S el e e e R B SR e G s s

i
:
:
-
.
-
%
1
-
.
g



